

OCR Computer Science AS Level

1.4.3 Boolean Algebra

Concise Notes

🕟 www.pmt.education

▶ Image: PMTEducation

Specification:

1.4.3 a)

- Define problems using Boolean logic
- 1.4.3 b)
- Manipulate Boolean expressions
 - Karnaugh maps to simplify Boolean expressions
- 1.4.3 c)
- Use logic gate diagrams and truth tables

S www.pmt.education

0

▶ Image: Second Second

Logic Gate Diagrams and Truth Tables

- Problems can be defined using Boolean logic in Boolean equations
- A Boolean equation can equate to either True or False
- Four operations are used:

Operation	Conjunction	Disjunction	Negation	Exclusive Disjunction
Logic gate	=D-	$\exists D$	$\overset{\hspace{0.1cm}}{\stackrel{\end{array}{\begin{array}{0}}{\stackrel{\end{array}{\end{array}}}{\stackrel{\end{array}}{\stackrel{\end{array}}{\stackrel{\end{array}}}{\stackrel{\end{array}}{\stackrel{\end{array}}}{\stackrel{\end{array}}}}}}}}}$	$\stackrel{\texttt{I}}{\Rightarrow}$
	AND	OR	NOT	XOR
Symbol	^	V	Г	$\underline{\vee}$

Truth tables

- A table showing every possible permutation of inputs to a logic gate and the corresponding output
- Inputs are usually labeled A, B, C etc
- 1 represents True, 0 represents False

Conjunction (AND)

- Applied to two literals (or inputs) to produce a single output
- Can be thought of as applying multiplication to its inputs
- Truth table shows $A \wedge B = Y$

Disjunction (OR)

- Operates on two literals and produces a single output
- Can be thought of as applying addition to its inputs
- As long as one input is True then the output is True
- Truth table shows $A \lor B = Y$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

AND

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

www.pmt.education

▶ Image: PMTEducation

Negation (NOT)

- Only applied to one literal
- Reverses the truth value of the input
- Truth table shows $\neg A = Y$

Exclusive Disjunction (XOR)

- Also known as exclusive OR
- Similar to disjunction but differs when both inputs are True
- Only outputs True when exactly one input is True
- Otherwise output is False
- Truth table shows $A \ensuremath{\,^{\lor}} B = Y$

Combining Boolean Operations

- Boolean equations are made by combining Boolean operators
- This is done in the same way that standard mathematical operators are combined
- Every boolean equation can be represented with a truth table

Manipulating Boolean Expressions

- Sometimes a long Boolean expression has the same truth table as another, shorter expression
- It tends to be desirable to use the shorter versions
- There are a variety of methods which can be used to simplify expressions

_		
Α	Y	
0	1	
1	0	

XOR				
Α	В	Υ		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

🕟 www.pmt.education 🛛 🖸 💿 🕑 PMTEducation

NOT

Karnaugh Maps

- Can be used to simplify Boolean expressions
- The tables are filled in corresponding to the expression's truth table
- Can be used for a truth table with two, three or four variables
- It's important that the values in the columns and rows are written using Gray code
- Columns and rows only ever differ by one bit, including wraparound
- To simplify a Boolean expression:
 - First write your truth table as a Karnaugh map
 - \circ Then highlight all of the 1s in the map with a rectangle
 - \circ $\,$ The larger the rectangle you can highlight at once the better
 - Only groups of 1s with edges equal to a power of 2 (1, 2 or 4 in a row) can be highlighted, wraparound is included
 - Remove variables which change within these rectangles from the expression
 - Keep variables which do not change, but negate to become True if required

DOG PMTEducation